Automated Analysis of Single-Molecule Photobleaching Data by Statistical Modeling of Spot Populations.
نویسندگان
چکیده
The number of fluorophores within a molecule complex can be revealed by single-molecule photobleaching imaging. A widely applied strategy to analyze intensity traces over time is the quantification of photobleaching step counts. However, several factors can limit and bias the detection of photobleaching steps, including noise, high numbers of fluorophores, and the possibility that several photobleaching events occur almost simultaneously. In this study, we propose a new approach, to our knowledge, to determine the fluorophore number that correlates the intensity decay of a population of molecule complexes with the decay of the number of visible complexes. We validated our approach using single and fourfold Atto-labeled DNA strands. As an example we estimated the subunit stoichiometry of soluble CD95L using GFP fusion proteins. To assess the precision of our method we performed in silico experiments showing that the estimates are not biased for experimentally observed intensity fluctuations and that the relative precision remains constant with increasing number of fluorophores. In case of fractional fluorescent labeling, our simulations predicted that the fluorophore number estimate corresponds to the product of the true fluorophore number with the labeling fraction. Our method, denoted by spot number and intensity correlation (SONIC), is fully automated, robust to noise, and does not require the counting of photobleaching events.
منابع مشابه
Nanometer-localized multiple single-molecule fluorescence microscopy.
Fitting the image of a single molecule to the point spread function of an optical system greatly improves the precision with which single molecules can be located. Centroid localization with nanometer precision has been achieved when a sufficient number of photons are collected. However, if multiple single molecules reside within a diffraction-limited spot, this localization approach does not w...
متن کاملChallenges in Estimating the Motility Parameters of Single Processive Motor Proteins.
Cytoskeletal motor proteins are essential to the function of a wide range of intracellular mechano-systems. The biophysical characterization of their movement along their filamentous tracks is therefore of large importance. Toward this end, single-molecule, in vitro stepping-motility assays are commonly used to determine motor velocity and run length. However, comparing results from such experi...
متن کاملKARYOTYPIC STUDY OF TRIFOLIUM SPECIES AND CULTIVARS IN IRAN
Trifolium species and cultivars are considered important forage crops iran , growing throughout the country. The present article considered the karyotypic details of Trvulim taxa using multivariate statistical analysis. Taxa studied included: Trifolim restylinatum (six populations: Shazand, Soriyan, Kordestan, Harati, Enaj and Lordegan), T. repense, T, fragverm, T. prateme and T, alexandrin...
متن کاملMeasuring, in solution, multiple-fluorophore labeling by combining fluorescence correlation spectroscopy and photobleaching.
Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process but also to quantify interactions, for instance within molecular complexes. We combined fluoresc...
متن کاملMACGT: multi-dimensional automated clustering genotyping tool for analysis of microarray-based mini-sequencing data
SUMMARY Multi-dimensional Automated Clustering Genotyping Tool (MACGT) is a Java application that clusters complex multi-dimensional vector data derived from single nucleotide polymorphism (SNP) genotyping experiments using mini-sequencing based microarray chemistries such as arrayed primer extension (APEX). Spot intensity output files from microarray experiments across multiple samples are imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 109 11 شماره
صفحات -
تاریخ انتشار 2015